The system of equations $-k x+3 y-14 z=25$ $-15 x+4 y-k z=3$ $-4 x+y+3 z=4$ is consistent for all $k$ in the set
$R$
$R -\{-11,13\}$
$R -\{13\}$
$R -\{-11,11\}$
If the system of equations
$x-2 y+3 z=9$
$2 x+y+z=b$
$x-7 y+a z=24$
has infinitely many solutions, then $a - b$ is equal to
Let $\left| {\,\begin{array}{*{20}{c}}{6i}&{ - 3i}&1\\4&{3i}&{ - 1}\\{20}&3&i\end{array}\,} \right| = x + iy$, then
$\left| {\begin{array}{*{20}{c}}0&a&{ - b}\\{ - a}&0&c\\b&{ - c}&0\end{array}} \right| = $
Let $\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}$. Then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{ - 1 - {\omega ^2}}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^4}}\end{array}\,} \right|$ is
If the system of linear equations
$2 x+y-z=3$
$x-y-z=\alpha$
$3 x+3 y+\beta z=3$
has infinitely many solution, then $\alpha+\beta-\alpha \beta$ is equal to .... .